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NONLINEAR ACCELERATOR PROBLEMS VIA WAVELETS:
8. INVARIANT BASES, LOOPS AND KAM
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Abstract 2 FLOER APPROACH FOR CLOSED

LOOPS
In this series of eight papers we present the applications of ) o o
methods from wavelet analysis to polynomial approximaNOW we consider the generalization of wavelet variational
tions for a number of accelerator physics problems. In thi@PProach to the symplectic invariant calculation of closed
part we consider variational wavelet approach for loops, ifo0PS in Hamiltonian systems [9]. As we demonstrated

variant bases on semidirect product, KAM calculation vid [31-[4] we have the parametrization of our solution by
FWT. some reduced algebraical problem but in contrast to the

cases from parts 1-4, where the solution is parametrized by
construction based on scalar refinement equation, in sym-
plectic case we have parametrization of the solution by ma-

1 INTRODUCTION trix problems — Quadratic Mirror Filters equations. Now
we consider a different approach. [&f, w) be a compact

This is the eighth part of our eight presentations in whicBYmplectic manifold of dimensiodv:, w is a closed 2-form
we consider applications of methods from wavelet analy’ondegenerate) od/ which induces an isomorphism
sis to nonlinear accelerator physics problems. This is A" M — TM. Thus every smooth time-dependent Hamil-
continuation of our results from [1]-[8], in which we con- fonian# : R x M — R corresponds to a time-dependent
sidered the applications of a number of analytical methodda@miltonian vector fieldXy; : R x M — T'M defined
from nonlinear (local) Fourier analysis, or wavelet analyPy w(Xu(t, 7)) = —d.H(t, z)¢ for £ € T, M. LetH
sis, to nonlinear accelerator physics problems both genef@Nd X ) is periodic in time:H (¢ + T, z) = H(t,x) and
and with additional structures (Hamiltonian, symplectic ofonsider corresponding Hamiltonian differential equation
quasicomplex), chaotic, quasiclassical, quantum. Wavel@f M: &(t) = X (t,z(t)) The solutionsc(t) determine
analysis is a relatively novel set of mathematical method8, 1-parameter family of diffeomorphisms < Diff(1/)
which gives us a possibility to work with well-localized Satisfying+(z(0)) = x(t). These diffeomorphisms are
bases in functional spaces and with the general type 8Ymplectic:w = ¢fw. Let L = LrM be the space of
operators (differential, integral, pseudodifferential) in sucgontractible loops inl/ which are represented by smooth
bases. In contrast with parts 1-4 in parts 5-8 we try tgurvesy : R — M satisfyingy(¢ + T) = ~(t). Then
take into account before using power analytical approach8# contractible T-periodic solutions can be characterized
underlying algebraical, geometrical, topological structuredS the critical points of the function&l= 57 : L — R:
related to kinematical, dynamical and hidden symmetry of T

physical problems. In section 2 we consider wavelet ap- St(y) = —/ urw +/ H{(t,~(t))dt, 1)
proach for calculation of Arnold—Weinstein curves (closed D 0

loops) in Floer variational approach. In section 3 we conyhereD C C be a closed unit disc and : D — M is
sider the applications of orbit technique for constructings smooth function, which on boundary agrees withi.e.
different types of invariant wavelet bases in the particulag(exp{zme}) = ~(OT). Becaused], the cohomology
case of affine Galilei group with the semiproduct structureslass ofw, vanishes thet$(v) is independent of choice
In section 4 we consider applications of very useful fassf . Tangent spac#, L is the space of vector fields ¢
wavelet transform (FWT) technique (part 6) to calculationg'> (v*T'Al) alongy satisfyingé(t 4+ T') = &(t). Then we

in KAM theory (symplectic scale of spaces). This methodhave for the 1-formlf : TL — R

gives maximally sparse representation of (differential) op- .

erator that allows us to take into account contribution from :

each level of resolution. dSr (7)€ —/O (w(¥,8) +dH(t,~)&)dt (2)

and the critical points ofS are contractible loops il
* e-mail: zeitin@math.ipme.ru which satisfy the Hamiltonian equations. Thus the criti-
1 http:/Avww.ipme.ru/zeitlin.html; http:/mww.ipme.nw.ru/zeitin.html - cal points are precisely the required T-periodic solutions.
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To describe the gradient 6f we choose: on almost com- group (relativity group combined with dilations) — affine
plex structure o/ which is compatible witlv. Thisisan Galilei group in n-dimensions. So, we have combination of
endomorphisny € C>°(End(T'M)) satisfyingJ? = —I  Galilei group with independent space and time dilations:
such thatg(¢,n) = w(&, J(z)n), &,n € T,M defines a Gurs = G, < Do, whereDs = (RF)? ~ R?, G,
Riemannian metric on M. The Hamiltonian vector field isis extended Galilei group corresponding to mass param-
then represented b¥ i (¢, z) = J(2)VH(t,z), whereV  eterm > 0 (G.sy iS noncentral extension @i a D,
denotes the gradient w.r.t. the x-variable using the metriby R, where G is usual Galilei group). Generic element
Moreover the gradient of w.r.t. the induced metric on of Gus; is g = (®,bo,b;v; R, ag,a), where® € R is

L is given bygradS(y) = J(y)¥ + VH(t,v), v € L. the extension parameter ii,,,, by € R, b € R" are
Studying the critical points of is confronted with the the time and space translations R" is the boost pa-
well-known difficulty that the variational integral is nei- rameter,R € SO(n) is a rotation andig,a € R/ are
ther bounded from below nor from above. Moreover, atime and space dilations. The actionsgbn space-time
every possible critical point the Hessianfofias an infinite is thenz +— aRx + agvt + b, t — agt + by, Where
dimensional positive and an infinite dimensional negative = (x1, x9, ..., ). It should be noted thab, acts non-
subspaces, so the standard Morse theory is not applicalifévially on G,,. Space-time wavelets associateddpy

The additional problem is that the gradient vector field ogorresponds to unitary irreducible representation of spin
the loop spacd.: dvy/ds = —gradf(y) does not define zero. It may be obtained via orbit method. The Hilbert
a well posed Cauchy problem. But Floer [9] found a wagpace it = L?(R" x R, dkdw), k = (k1, ..., k), where

to analyse the spack! of bounded solutions consisting of R™ x R may be identified with usual Minkowski space and
the critical points together with their connecting orbits. Have have for representation:

used a combination of variational approach and Gromov’ _ — ;o
elliptic technique. A gradient flow line of is a smooth (U (0) W) (k. ) = VagaTexpi(m® + kb — wbo) ¥(K', ).

o n | different - (5)
solutionu : R — M of the partial differential equation with & = aR-1(k + mo), o' = ao(w — kv — %mUQ)’
I — (g2 - i i
Gu + J(u)@ + VH(t,u) =0, @ "= (a?/ap)m. Mass m is a coordinate in the dual of

0s ot the Lie algebra and these relations are a part of coadjoint

which satisfies:(s,t + T') = u(s,t). The key point is to action of G4¢f. This representation is unitary and irre-
consider (3) not as the flow on the loop space but as an élucible but not square integrable. So, we need to consider
liptic boundary value problem. It should be noted that (3jeduction to the corresponding quoties= G/H. We
is a generalization of equation for Gromov’s pseudohold=onsider the case in which Hphase changeb and space
morphic curves (correspond to the cagél = 0 in (3)). dilationsa}. Then the spac& = G/H is parametrized
Let M = My (H, J) the space of bounded solutions ofPY pointsz = (bo, b; v; R; ao). There is a dense set of vec-
(3), i.e. the space of smooth functions C/iTZ — M, torsn € H admissiblenod(H, o), whereo is the corre-
which are contractible, solve equation (3) and have finitePonding section. We have a two-parameter family of func-
energy flow: tions f(dilations): 5(z) = (o + Ayao)'/?, Xo, 10 € R,
- Then any admissible vectar generates a tight frame of
dp(u) = 1// (‘6_“|2 n |@ ~ Xyt u)P)dtds Galilean wavelets
2 o \ Os t ’ '

0
(4) n3() (k7w) — \/aO(HO + )\an)n/Qei(ktb—wbo)n(k/7w/)7

For everyu € My there exists a pait, y of contractible (6)
T-periodic solutions, such thatis a connecting orbit from with &’ = (ug + Xoa)/?R™(k 4+ mw), o' = ag(w —
ytox: lime_._oou(s,t) = y(t), lims o = x(t). Then kv — mo?/2). The simplest examples of admissible vec-
our approach from preceding parts, which we may apply aors (corresponding to usual Galilei case) are Gaussian
on the level of standard boundary problem or on the level afector: 7(k) ~ exp(—k?/2mu) and binomial vector:
variational approach and representation of operators (in ogfk) ~ (1 + k?/2mu)~*/?, a > 1/2, whereu is a
caseJ andV) according to part 6(FWT technique) lead uskind of internal energy. When we impose the relation

to wavelet representation of closed loops. ap = a? then we have the restriction to the Galilei-
Schidinger groupGs = G.,, < Dg, where Dy is the
3 CONTINUOUS WAVELET one-dimensional subgroup dP,. G, is a natural in-
TRANSFORM. BASES FOR variance group of both the Sddinger equation and the
SOLUTIONS. heat equation. The restriction t@; of the represen-

tation (29) splits into the direct sum of two irreducible
When we take into account the Hamiltonian or LagrangiaoanesU = U, & U_ corresponding to the decomposi-
structures from part 7 we need to consider generalizabn L2(R" x R,dkdw) = Hy & H_, whereHy =
wavelets, which allow us to consider the corresponding?(Dy,dkdw = {¢ € L*(R" x R, dkdw), ¥ (k,w) =
structures instead of compactly supported wavelet reprefor w + k?/2m = 0}. These two subspaces are the ana-
sentation from parts 1-4. We consider an important palegues of usual Hardy spaces R i.e. the subspaces of
ticular case of constructions from part 7: affine relativityanti)progressive wavelets (see also below, part Il A). The
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two representatio/. are square integrable modulo the W,s(b,a)|? < c||s||?qk(Rn).
center. There is a dense set of admissible vecfpend
each of them generates a set®§ of Gilmore-Perelomov This shows that localization of the wavelet coefficients at

type. Typical wavelets of this kind are: the Sotliriger- Small scale is linked to local regularity. So, we need repre-
Marr wavelet: n(z,t) = (i0, + A/2m)e—(@"+t)/2 the Sentation for differential operatas (n our case) in wavelet
Schidinger-Cauchy wavelets(z, t) = (id, + A/2m) x ~ basis. We consider it by means of the methods from part 6.
(t+ )Ty (o + i)_l. So, in the same way we can con- We are very grateful to M. Cornacchia (SLAC), W. Her-
struct different invariant bases with explicit manifestatior{ma”nsmldt (SLAC) Mrs. J. Kono (LBL) and M. Laraneta

of underlying symmetry for solving Hamiltonian or La- (UCLA,) for their permanent encouragement.

grangian equations.
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_ dbda _
C 1||8||%{k(Rn) S/n p (1+G, 2’Y)| X
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